In a world illuminated only by fire, Galileo described in detail the surface of the Moon, which we now know is 238, 857 miles away. His Sidereal Messenger, also translated as Starry Messenger, was the first-ever treatise to detail astronomical observations made through a telescope. Galileo suggested that the Moon's surface was not smooth, as his contemporaries thought. Hoping for a patron, he dedicated his work to Cosimo de'Medici II and named the four planets he discovered in 1610 the Medicean Stars. Today, these four moons of Jupiter are, collectively, the Galilean Moons.









lately invented by him,

Respecting the Moon's surface, an innumerable number of Fixed Stars,
the Milky Way, and Nebulous Stars, but especially respecting
Four Planets which revolve round the Planet Jupiter at
different distances and in different periodic times, with
amazing velocity, and which, after remaining
unknown to every one up to this day, the
Author recently discovered, and
Determined to name the


VENICE, 1610

Translated into English in 1880 by Edward Stafford Carlos, M.A.
Head Mathematical Master in Christ's Hospital


In the present small treatise I set forth some matters of great interest for all observers of natural phenomena to look at and consider. They are of great interest, I think, first, from their intrinsic excellence; secondly, from their absolute novelty; and lastly, also on account of the instrument by the aid of which they have been presented to my apprehension.

The number of the Fixed Stars which observers have been able to see without artificial powers of sight up to this day can be counted. It is therefore decidedly a great feat to add to their number, and to set distinctly before the eyes other stars in myriads, which have never been seen before, and which surpass the old, previously known, stars in number more than ten times.

Again, it is a most beautiful and delightful sight to behold the body of the Moon, which is distant from us nearly sixty semi-diameters2 of the Earth, as near as if it was at a distance of only two of the same measures; so that the diameter of this same Moon appears about thirty times larger, its surface about nine hundred times, and its solid mass nearly 27,000 times larger than when it is viewed only with the naked eye; and consequently any one may know with the certainty that is due to the use of our senses, that the Moon certainly does not possess a smooth and polished surface, but one rough and uneven, and, just like the face of the Earth itself, is everywhere full of vast protuberances, deep chasms, and sinuosities.

Then to have got rid of disputes about the Galaxy or Milky Way, and to have made its nature clear to the very senses, not to say to the understanding, seems by no means a matter which ought to be considered of slight importance. In addition to this, to point out, as with one's finger, the nature of those stars which every one of the astronomers up to this time has called nebulous, and to demonstrate that it is very different from what has hitherto been believed, will be pleasant, and very fine. But that which will excite the greatest astonishment by far, and which indeed especially moved me to call the attention of all astronomers and philosophers, is this, namely, that I have discovered four planets, neither known nor observed by any one of the astronomers before my time, which have their orbits round a certain bright star, one of those previously known, like Venus and Mercury round the Sun, and are sometimes in front of it, sometimes behind it, thought they never depart from it beyond certain limits. All which facts were discovered and observed a few days ago by the help of a telescope3 devised by me, through God's grace first enlightening my mind.

Perchance other discoveries still more excellent will be made from time to time by me or by other observers, with the assistance of a similar instrument, so I will first briefly record its shape and preparation, as well as the occasion of its being devised, and then I will give an account of the observations made by me.

About ten months ago a report reached my ears that a Dutchman had constructed a telescope, by the aid of which visible objects, although at a great distance from the eye of the observer, were seen distinctly as if near; and some proofs of its most wonderful performances were reported, which some gave credence to, but others contradicted. A few days after, I received confirmation of the report in a letter written from Paris by a noble Frenchman, Jaques Badovere, which finally determined me to give myself up first to inquire into the principle of the telescope, and then to consider the means by which I might compass the invention of a similar instrument, which a little while after I succeeded in doing, through deep study of the theory of Refraction; and I prepared a tube, at first of lead, in the ends of which I fitted two glass lenses, both plain on one side, but on the other side one spherically convex, and the other concave. Then brining my eye to the concave lens I saw objects satisfactorily large and near, for they appeared one-third of the distance off and nine times larger than when they are seen with the natural eye alone. I shortly afterwards constructed another telescope with more nicety, which magnified objects more than sixty times. At length, by sparing neither labour nor expense, I succeeded in constructing for myself an instrument so superior that objects seen through it appear magnified nearly a thousand times, and more than thirty times nearer than if viewed by the natural powers of sight alone.

basic telescope construction line drawing

It would be altogether a waste of time to enumerate the number and importance of the benefits which this instrument may be expected to confer, when used by land or sea. But without paying attention to its use for terrestrial objects, I betook myself to observations of the heavenly bodies; and first of all, I viewed the Moon as near as if it was scarcely two semi-diameters4 of the Earth distant. After the Moon, I frequently observed other heavenly bodies, both fixed stars and planets, with incredible delight; and, when I saw their very great number, I began to consider about a method by which I might be able to measure their distances apart, and at length I found one. And here it is fitting that all who intend to turn their attention to observations of this kind should receive certain cautions. For, in the first place, it is absolutely necessary for them to prepare a most perfect telescope, one which will show very bright objects distinct and free from any mistiness, and will magnify them at least 400 times, for then it will show them as if only one-twentieth of their distance off. For unless the instrument be of such power, it will be in vain to attempt to view all the things which have been seen by me in the heavens, or which will be enumerated hereafter.

But in order that any one may be a little more certain about the magnifying power of his instrument, he shall fashion two circles, or two square pieces of paper, one of which is 400 times greater than the other, but that will be when the diameter of the greater is twenty times the length of the diameter of the other. Then he shall view from a distance simultaneously both surfaces, fixed on the same wall, the smaller with one eye applied to the telescope, and the larger with the other eye unassisted; for that may be done without inconvenience at one and the same instant with both eyes open. Then both figures will appear of the same size, if the instrument magnified objects in the desired proportion.

After such an instrument has been prepared, the method of measuring distances remains for inquiry, and this we shall accomplish by the following contrivance:

For the sake of being more easily understood, I will suppose a tube ABCD5. Let E be the eye of the observer; then, when there are no lenses in the tube rays from the eye to the object FG would be drawn in the straight lines ECF, EDG, but when the lenses have been inserted, let the rays go in the best lines EDH, EDI, —for they are contracted, and those which originally, when unaffected by the lenses, were directed to the objects FG, will include only the part H I. Hence the ratio of the distance EH to the line H I being known, we shall be able to find, by means of a table of sines, the magnitude of the angle subtended at the eye by the object H I, which we shall find to contain only some minutes. But if we fit on the lens CD thin plates of metal, pierced, some with larger, others with smaller apertures, by putting on over the lens sometimes one plate, sometimes another, as may be necessary, we shall construct at our pleasure different subtending angles of more or fewer minutes, by the help of which we shall be able to measure conveniently the intervals between stars separated by and angular distance of some minutes, within an error of one or two minutes. But let it suffice for the present to have thus slightly touched, and as it were just put our lips to these matters, or on some other opportunity I will publish the theory of this instrument in completeness.

Now let me review the observations made by me during the two months just past, again inviting the attention of all who are eager for true philosophy to the beginnings which led to the sight of most important phenomena.

Let me speak first of the surface of the Moon, which is turned towards us. For the sake of being understood more easily, I distinguish two parts in it, which I call respectively the brighter and the darker. The brighter part seems to surround and pervade the whole hemisphere; but the darker part, like a sort of cloud, discolours the Moon's surface and makes it appear covered with spots. Now these spots, as they are somewhat dark and of considerable size, are plain to every one, and every age has seen them, wherefore I shall call them great or ancient spots, to distinguish them from other spots, smaller in size, but so thickly scattered that they sprinkle the whole surface of the Moon, but especially the brighter portion of it. These spots have never been observed by any one before me; and from my observations of them, often repeated, I have been led to the opinion which I have expressed, namely, that I feel sure that the surface of the Moon is not perfectly smooth, free from inequalities and exactly spherical, as a large school of philosopher consider with regard to the Moon and the other heavenly bodies, but that, on the contrary, it is full of inequalities, uneven, full of hollow and protuberances, just like the surface of the Earth itself, which is varied everywhere by lofty mountains and deep valleys.

moon images

The appearances from which we may gather these conclusions are of the following nature:—On the fourth or fifth day after new-moon, when the Moon presents itself to us with bright horns, the boundary which divides the part in shadow from the enlightened part does not extend continuously in an ellipse, as would happen in the case of a perfectly spherical body, but it is marked out by an irregular, uneven, and very wavy line, as represented in the figure given, for several bright excrescences, as they may be called, extend beyond the boundary of light and shadow into the dark part, and on the other hand pieces of shadow encroach upon the light:—nay, even a great quantity of small blackish spots, altogether separated from the dark part, sprinkle everywhere almost the whole space which is at the time flooded with the Sun's light, with the exception of that part alone which is occupied by the great and ancient spots. I have noticed that the small spots just mentioned have this common characteristic always and in every case, that they have the dark part towards the Sun's position, and on the side away from the Sun they have brighter boundaries, as if they were crowned with shining summits. Now we have an appearance quite similar on the Earth about sunrise, when we behold the valleys, not yet flooded with light, but the mountains surrounding them on the side opposite to the Sun already ablaze with the splendour of his Beams; and just as the shadows in the hollows of the Earth diminish in size as the Sun rises higher, so also these spots on the Moon lose their blackness as the illuminated part grows larger and larger. Again, not only are the boundaries of light and shadow in the Moon seen to be uneven and sinuous, but—and this produces still greater astonishment—there appear very many bright points within the darkened portion of the Moon, altogether divided and broken off from the illuminated tract, and separated from it by no inconsiderable interval, which, after a little while, gradually increase in size and brightness, and after an hour or two become joined on to the rest of the bright portion, now become somewhat larger; but in the meantime others, one here and another there, shooting up as if growing, are lighted up within the shaded portion, increase in size, and at last are linked on to the same luminous surface, now still more expanded. An example of this is given in the same figure. Now, is it not the case on the Earth before sunrise, that while the level plain is still in shadow, the peaks of the most lofty mountains are illuminated by the Sun's rays? After a little while does not the light spread further, while the middle and larger parts of those mountain are becoming illuminated; and at length, when the Sun has risen, do not the illuminated parts of the plains and hills join together? The grandeur, however, of such prominences and depressions in the Moon seems to surpass both in magnitude and extent the ruggedness of the Earth's surface, as I shall hereafter show. And here I cannot refrain from mentioning what a remarkable spectacle I observed while the Moon was rapidly approaching her first quarter, a representation of which is given in the same illustration, placed opposed page 16. A protuberance of the shadow, of great size, indented the illuminated part in the neighborhood of the lower cusp; and when I had observed this indentation longer, and had seen that it was dark throughout, at length, after about two hours, a bright peak began to arise a little below the middle of the depression; this by degrees increased, and presented a triangular shape, but was as yet quite detached and separated from the illuminated surface. Soon around it three other small points began to shine, until, when the Moon was just about to set, that triangular figure, having now extended and widened, began to be connected with the rest of the illuminated part, and still girt with the three bright peaks already mentioned, suddenly burst into the indentation of shadow like a vast promontory of light.

At the ends of the upper and lower cusps also certain bright points, quite away from the rest of the bright part, began to rise out of the shadow, as is seen depicted in the same illustration.

In both horns also, but especially in the lower one, there was a great quantity of dark spots, of which those which are nearer the boundary of light and shadow appear larger and darker, but those which are more remote less dark and more indistinct. In all cases, however, just as I have mentioned before, the dark portion of the spot faces the position of the Sun's illumination, and a brighter edge surrounds the darkened spot on the side away from the Sun, and towards the region of the Moon in shadow. This part of the surface of the Moon, where it is marked with spots like a peacock's tail with its azure eyes, is rendered like those glass vases which, through being plunged while still hot from the kiln into cold water, acquire a crackled and wavy surface, from which circumstance they are commonly called frosted glasses6. Now the great spots of the Moon observed at the same time are not seen to be at all similarly broken, or full of depressions and prominences, but rather to be even and uniform; for only here and there some spaces, rather brighter than the rest, crop up; so that if any one wishes to revive the old opinion of the Pythagoreans, that the Moon is another Earth, so to say, the brighter portion may very fitly represent the surface of the land, and the darker the expanse of water. Indeed, I have never doubted that if the sphere of the Earth were seen from a distance, when flooded with the Sun's rays, that part of the surface which is land would present itself to view as brighter, and that which is water as darker in comparison. Moreover, the great spots in the Moon are seen to be more depressed than the brighter tracts; for in the Moon, both when crescent and when waning, on the boundary between the light and shadow, which projects in some places round the great spots, the adjacent regions are always brighter, as I have noticed in drawing my illustrations, and the edges or the spots referred to are not only more depressed than the brighter parts, but are more even, and are not broken by ridges or ruggednesses. But the brighter part stands out most near the spots, so that both before the first quarter and about the third quarter also, around a certain spot in the upper part of the figure, that is, occupying the northern region of the Moon, some vast prominences on the upper and lower sides of it rise to an enormous elevation, as the illustrations show. This same spot before the third quarter is seen to be walled round with boundaries of a deeper shade, which just like very lofty mountain summits appear darker on the side away from the Sun, and brighter on the side where they face the Sun; but in the case of the cavities the opposite happens, for the part of them away from the Sun appears brilliant, and that part which lies nearer to the Sun dark and in shadow. After a time, when the enlightened portion of the Moon's surface has diminished in size, as soon as the whole or nearly so of the spot already mentioned is covered with shadow, the brighter ridges of the mountains mount high above the shade. These two appearances are shown in the illustrations which are given.

There is one other point which I must on no account forget, which I have noticed and rather wondered at. It is this:—The middle of the Moon, as it seems, is occupied by a certain cavity larger than all the rest, and in shape perfectly round. I have looked at this depression near both the first and third quarters, and I have represented it as well as I can in the second illustration already given. It produces the same appearance as to effects of light and shade as a tract like Bohemia would produce on the earth if it were shut in on all sides by very lofty mountains arranged on the circumference of a perfect circle; for the tract in the Moon is walled in with peaks of such enormous height that the furthest side adjacent to the dark portion of the Moon is seen bathed in sunlight before the boundary between light and shade reaches half-way across the circular space. But according to the characteristic property of the rest of the spots, the shaded portion of this too faces the Sun, and the bright part is towards the dark side of the Moon, which for the third time I advise to be carefully noticed as a most solid proof of the whole ruggedness and unevennesses spread over the whole of the bright region of the Moon. Of these spots, moreover, the darkest are always those which are near the boundary-line between the light and the shadow, but those further off appear both smaller in size and less decidedly dark; so that at length, when the Moon at opposition becomes full, the darkness of the cavities differs from the brightness of the prominences with a subdued and very slight difference.

1 The satellites of Jupiter are here called "the Cosmian Stars" in honour of Cosmo de' Medici, but elsewhere Galileo calls them "the Medicean Stars." Kepler sometimes calls them "the Medicean Stars," but more often "satellites."
2 Galileo says, "per sex denas fere terrestres diametros a nobis remotum" by mistake for semi-diametros, and the same mistake occurs later.
3 The words used by Galileo for "telescope" are perspicillum, specillum instrumentum, organum, and occhiale (Ital.). Kepler uses also oculare turbus, arundo dioptrica. The word "telescopium" is used by Gassendi, 1647.
4 "Vix per duas Telluris diametros," by mistake for "semi-diameteros."
5 The line CH in Galileo's figure represents the small pencil of rays from H which, after refraction through the telescope, reach the eye E. The enlarged figure shows that if O P be the radius of the aperture employed, the point H of the object would be just outside the field of view. The method, however, is at best only a very rough one, as the boundary of the field of view in this telescope is unavoidably indistinct.
6 Specimens of frosted or crackled Venetian glass are to be seen in the Slade Collection, British Museum, and fully justify Galileo's comparison.