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Abstract:
A variational principle is suggested within Riemannian geometry, in which
an auxiliary metric and the Levi Civita connection are varied independently.
The auxiliary metric plays the role of a Lagrange multiplier and introduces
non-minimal coupling of matter to the curvature scalar. The field equa-
tions are 2nd order PDEs and easier to handle than those following from
the so-called Palatini method. Moreover, in contrast to the latter method,
no gradients of the matter variables appear. In cosmological modeling, the
physics resulting from the new variational principle will differ from the mod-
eling using the Palatini method.

PACS numbers: 04.20 Fy, 04.50 Kd, 98.80 Cq, 02.40 Ky

1 Introduction

For the derivation of the field equation of Einstein’s theory of gravitation
and of alternative gravitational theories sometimes a method named, alter-
natively, “Palatini’s Principle”, “the Palatini method of variation” or “Pala-
tini’s device” is used. Although the starting point is Riemannian geometry,
besides the metric an independent affine connection forming the curvature
tensor is imagined; in the Lagrangian, both metric and connection then are
varied independently. An advantage of the method is that it leads to 2nd or-
der field equation for Lagranians of higher order in curvature while a variation
of the metric as the only variable results in 4th-order PDEs. On the other
hand, a main conceptual difficulty of the method is that the variational pro-
cedure mixes Riemannian and metric-affine geometry. Authors either leave
undetermined the space-time geometry as a frame for the new connection,
or tacitely fix it mentally by introducing constraints (symmetric connection,
no torsion etc) which do not show up in the formalism.
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Since many years, warnings have been voiced that the method be working
reliably only for the Hilbert-Einstein Lagrangian (plus the matter part) L =√−g [R(gij) + 2κLmat(gij , u

A)] with curvature scalar R = glmRlm(gij) and
matter variables uA, but otherwise leads to under- and un-determinacies [1],
[2], [3].1 Recently, Palatini’s method has been unearthed in attempts to
build cosmological models thought to explain the accelerated expansion of
the universe with its consequences for dark energy [7], [8], [9], [10], [11]. The
method also has been applied to loop quantum cosmology [12]. Often, the
starting point is a Lagrangian of the form L =

√−g [ R(gij) + f̃(R) ] +√−g 2κLmat(gij , u
A) with f̃ an arbitrary smooth function.2 In the following,

we suggest another variational principle leading to 2nd order field equations
and lacking the deficiencies of the Palatini method. After its introduction,
it is applied to the class of f(R)-theories in section 3 and compared with
the Palatini method in section 4. A recent particular choice for f(R) in
the framework of cosmological modeling then is used as an example for the
working of the new principle.

2 The new variational principle

Whereas in the Palatini method the Levi Civita connection (represented by
the Christoffel symbol) is replaced by a general affine connection, here we
keep the geometry (pseudo-)Riemannian but introduce an auxiliary Lorentz
metric. This is done by replacing, in an action integral set up within Rieman-
nian geometry, the (Lorentz-)metric gab by an auxiliary metric γab except in
the Levi Civita connection which is left unchanged. The independent vari-
ables for the variation are γab and the Levi Civita connection formed from
gab

{kij}g =
1

2
gkl(

∂gil

∂xj
+

∂gjl

∂xi
− ∂gij

∂xl
) . (1)

The equations following from the variation will give the dynamics of the
gravitational field and link γab with gab. We wish to emphasize that it is not

1For incorrectly relating Palatini’s name with what is ascibed to him cf. [4], footnote
on p. 40 as well as the English translation of Palatini’s paper in the same volume on pp.
477-488 (1980). Cf. also [5].

2Recently, Lagrangians with two curvature invariants, i.e., f(R, RabRlmgalgbm) have
been considered [13].
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a bi-metric theory which is aimed at.3 The auxiliary metric may be seen as
playing the role of a Lagrange multiplier. This is analogous to the case of
scalar-tensor theories replacing f(R)-theories of gravitation (cf. [14], [15]).
The new variational principle for Einstein gravity starts from:4

L =
√−γ [γab Rab({kij}g) + 2κLmat(γlm, u

A)] . (2)

Variation with respect to γab leads to:

δγL =
√
−γ [ Rab({kij}g)−

1

2
γab Rγ + 2κ Tab(γlm , uA) ] δγab, (3)

where Rγ := γlmRlm({kij}g) and Tab :=
2√−γ

δLmat

δγab . Variation with respect to

{kij}g gives:

δ{kij}gL = [ − (
√
−γ γb(i);bδ

j)
k + (

√
−γ γij);k ] δ({kij}g) (4)

up to divergence terms.5 From δ{kij}gL = 0, after a brief calculation using the

trace of (4),
(
√−γ γij);k = 0 (5)

follows, where the covariant derivative is formed with the Levi Civita connec-
tion. Thus, γab = const · gab follows. δγL = 0 from (3) reduces to Einstein’s
field equations.

The method is particularly well suited to a calculus with differential forms.
Here, the usual basic 1-forms θi = ei r dxr and the curvature 2-form Ωij =
1
2
Rijkl(glm)θ

k ∧ θl are taken as the independent variables. In place of the
auxiliary metric γij, now an auxiliary 1-form is introduced and denoted by
θ̄i = ēi r dxr where

ēi r ējs η
ij = γrs, ei r e

j
s η

ij = grs . (6)

3In bi-metric theories, one metric usually is fixed to be the flat Minkowskian metric and
not varied. A formal variation of the second metric often is restricted to an infinitesimal
coordinate change in order to derive conservation laws. Cf. [6].

4Latin indices a, b, i, j, ... run from 0 to 3; the summation convention is implied.
5(
√−γAk);k always may be written as

√−g (
√

γ

g
Ak);k and thus as (

√−γAk),k.
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The Einstein-Hilbert Lagrangian is LE = Ωab∧∗(θ̄a∧ θ̄b) with the Hodge-star
operation: ∗(θ̄a ∧ θ̄b) =: ǭab and ǭab :=

1
2!
ǫablmθ̄

l ∧ θ̄m.6 Variation with regard
to the fundamental 1-forms and curvature form leads to the field equations:

D(
∂LE

∂Ωij
) = 0,

∂LE

∂θ̄i
= 0 (7)

with the covariant external derivative D using the Levi Civita connection
(1-form). Because of ∂LE

∂Ωij
= ∗(θ̄i ∧ θ̄j) and of ∂LE

∂θ̄i
= Ωlm ∧ ǭilm , the field

equations are:
Dǭij = 0 , Ωlm ∧ ǭilm = 0 , (8)

where ǭilm := ǫilmpθp is a 1-form; ǭilm is dual to θ̄i ∧ θ̄l ∧ θ̄m. Standard
manipulations with the forms show that the 1st equation (8) is satisfied
identically due to the absence of torsion, i.e, Dθ̄m = 0; and that the 2nd
becomes: 2Gc

a(g)ǭc = 0 with the Einstein tensor Gc
a(g) and the 3-form

ǭi :=
1
3!
ǫiklmθ̄

k ∧ θ̄l ∧ θ̄m . An advantage of this formalism is that it may be
adapted easily to gauge theories.

3 Extension to f(R)-theories

The new variational principle easily applies to the Lagrangian

L =
√−γ [f(γlmRlm({kij}g)) + 2κ Lmat(γij, u

A)] . (9)

The variations lead to:

δγL =
√
−γ [ f ′(Rγ)Rab({kij}g)−

1

2
γab f(Rγ) + 2κ Tab(γlm , uA, ∂uA) ] δγab,

(10)
whith f ′ := df

dR
and to

δ{kij}gL = [ − (
√−γ f ′(Rγ)γ

b(i);bδ
j)

k + (
√−γ f ′(Rγ)γ

ij);k ] δ({kij}g) (11)

up to divergence terms. As in section 2, from (11)

(
√
−γ f ′(Rγ)γ

ij);k = 0 , (12)

6Notation here is somewhat ambiguous: e.g., the curvature form depends on both the
Levi Civita connection and the auxiliary tetrad: Ωij =

1
2
Rijkl({kij}g) θ̄k∧ θ̄l. Nevertheless,

no bar will be put on Ω. The notation Ωij(g, θ̄) would be inconvenient.
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but from which now follows:

γab = f ′(Rγ)g
ab, γab = (f ′(Rγ))

−1gab . (13)

From (13), Rγ = f ′(Rγ)Rg with Rg := glmRlm({kij}g), i.e., the curvature
scalar in (pseudo-)Riemannian space-time. Writing

Rg =
Rγ

f ′(Rγ)
=: r(Rγ) , (14)

the relation Rγ = r−1(Rg) can be used to remove all entries of γab via the
curvature scalar in the field equations following from (10). Expressed by gab,
they read as:

f ′(r−1(Rg))Rab({kij}g)−
1

2
gab

f(r−1(Rg))

f ′(r−1(Rg))
+2κ Tab((f

′)−1(r−1(Rg)) glm , uA) = 0 .

(15)
Equation (15) shows that, in contrast to f(R)-theories leading to 4th-order
differential equations when derived by variation of only the metric gab, the
new field equations are of 2nd order in the derivatives of gab. The auxiliary
metric is fully determined: γab = f ′(r−1(Rg))g

ab; it is not an absolute object.
Beyond acting as a Lagrange multiplier its main function is its appearance
in the matter tensor causing non-minimal coupling to the curvature scalar.
No further role in the description of the gravitational field is played.7 For a
Lagrangian of the form

√−g [ R(gij) + f̃(R) ], in the formalism given above
f is to be replaced by R + f̃(R), f ′ by 1 + f̃ ′ while f ′′ = f̃ ′′, f ′′′ = f̃ ′′′.

A.
First, a non-vanishing trace (with respect to the auxiliary metric γ) of the
matter tensor will be assumed Tγ := γlmTlm(γrs , uA) 6= 0. In this case, the
curvature scalar is seen to be a functional of the trace of the matter tensor.
Because of

Tγ = f ′(Rγ) g
lmTlm(f

′(r−1(Rg))grs, u
A) = f ′(r−1(Rg))Tg(f

′(r−1(Rg))grs, u
A),(16)

with T̃g := glmTlm(γrs, u
A) from the g-trace of (15) follows:

f ′2 Rg − 2f + 2κ f ′ T̃g = 0 , (17)

7In particular, γab does not enter the Levi Civita connection, but only the matter
tensor. As a metric γab is incompatible with the Levi Civita connection; its non-metricity
tensor does not vanish.
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or, precisely,

(f ′(r−1(Rg))
2Rg − 2f(r−1(Rg)) + 2κf ′(r−1(Rg))T̃g((f

′(Rg))
−1glmu

A) = 0 .

(18)
With a newly defined function ω this can be written as

Rg = ω(2κTg) , (19)

where now Tg := glmTlm(grs, u
A). From (18) we conclude that (15) can be

cast into the form of Einstein’s equations with an effective matter tensor.
The curvature scalar is coupled directly to the matter variables showing up
in its trace; no derivatives are involved. In fact:

Rab({kij}g)−
1

2
gab(Rg) = −2κ

f ′ [ Tab(
1

f ′ glm, u
A)− 1

2
Tgab ]−

1

2
gab

f

(f ′)2
. (20)

In the case of perfect fluid matter with energy density µ and pressure p

Tab(γrs, u
A) = (µ+ p) γalγbmū

lūm − p γab (21)

with ūl := dxl

ds̄
and ds̄2 = γlmdx

ldxm. Hence, ūl = (f ′)1/2 ul , ul = dxl

ds
and

Tab(γrs, u
A) = (f ′)−1(Rg) Tlm(grs, u

A) . (22)

In this case, from (16) a simple relationship for the γ- and g-traces of the
matter tensor follows:

Tγ(γrs , u
A) = Tg(grs, u

A) = µ− 3p . (23)

In place of T ab
; b = 0 for the Einstein-Hilbert Lagrangian, in this theory a

more general relationship with T ab
; b 6= 0 follows from general covariance.

This is also seen by forming the divergence of the Einstein tensor in (20).

B.
For vanishing trace of the matter tensor Tγ = 0, (18) reduces to

f ′(Rγ)Rγ − 2f(Rγ) = 0 . (24)

This implies two cases:
i) f = (f0Rγ)

2, and ii) f 6= (f0Rγ)
2. The exceptional case i) is characterized
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by an additional scale invariance implying zero trace for the matter tensor.
The field equations (15) become

2(f0)
2(Rγ)[Rab(g)−

1

4
Rg gab] + 2κTab(

1

2f 2
0Rγ

glm, u
A) = 0 ,

Rg =
1

2(f0)2
, Tγ = Tg = 0 . (25)

If we take a sourceless Maxwell field as matter, then

Tab(γlm, Flm) = γlmFalFbm− 1

4
γabγ

ilγjmFilFjm = f ′(Rγ)Tab(glm, Flm) . (26)

Rγ drops out and the field equations are:

Rab(g)−
1

4
Rg gab + κ Tab(glm, u

A) = 0 ,

Rg =
c1

f ′(c1)
, Tγ = Tg = 0 . (27)

In case ii), from (24) Rγ = c1 = const and we may proceed only if one
real solution of f ′(c1) c1 − 2f(c1) = 0 does exist and if f(c1), f ′(c1) remain
finite. The field equations then are

f ′(c1)Rab(g)−
c1

4
gab + 2κTab(

1

f ′(c1)
glm, u

A) = 0 ,

Tγ = Tg = 0 . (28)

In Einstein’s theory, R = 0 follows if the trace of the matter tensor is
vanishing. Here, the larger set of solutions R = const is obtained.

Above, it has been assumed that the matter tensor does not contain
covariant derivatives; this covers most cases of physical interest. Other-
wise, formidable complications result even when the Einstein-Hilbert La-
grangian is taken. E.g., if the additional term in the matter Lagrangian is ∼√−γγilγkmui;k ul;m (5) must be replaced by (

√−γ γij);k = f
ij
k (γlm, uA, ∂uA)

with a particular functional f ij
k . Hence, the elimination of the Lagrangian

multiplier will requirec quite an effort.
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4 Comparison with the Palatini method

For the Palatini method of variation with variables gij and Γk
ij, the field

equations of the f(R)-theory are:

f ′(R)Rik(Γ)−
1

2
f(R)gik = −2κ Tik, (29)

(
√−gf ′(R)gil)‖l = 0 , (30)

where the covariant derivative is formed with the connection Γ and R =
gikRik(Γ). From (30) we obtain a metric ḡij compatible with the connection
Γ:

ḡij = f ′(R) gij , ḡij = (f ′)−1(R) gij , (31)

and the relation between Γ and the Levi Civita connection is:

Γk
ij ≡ {kij}ḡ = {kij}g +

1

2

d

dR
(lnf ′(R)) [2δk(iR,j) − gijg

klR,l] . (32)

A comparison of (13) and (31) shows the difference between γij and ḡij. With
the help of (32) and (31) we can rewrite the tracefree part of (29) in terms
of the conformally related metric ḡij

R̄ab(ḡ)−
1

4
R̄(ḡ) ḡab = Rab(g)−

1

4
R(g) gab −

f ′′

f ′ [R,i;j −
1

4
gij�R]−

−(
f ′′

f ′ −
3

2
(
f ′′

f ′ )
2) [R,iR,j −

1

4
gijR,lR,mg

lm] . (33)

When bringing the field equations into the form of Einstein’s equations, the
result is:

Rab(g)−
1

2
R(g) gab = −2κTab(g)−

f ′′

f ′ [R,i;j − gij�R]−

−[
f ′′′

f ′ − 3

2
(
f ′′

f ′ )
2] R,iR,j + (

f ′′′

f ′ − 3

4
(
f ′′

f ′ )
2) gijR,lR,mg

lm . (34)

Again, the trace equation of (29), i.e.,

f ′(R)R− 2f(R) = −2κ Tg , (35)

is used to eliminate the curvature scalar in favour of the trace of the matter
tensor. This means that the non-minimal coupling to the curvature scalar
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and its derivatives will be replaced by a coupling to the gradients of the
matter variables contained in gikTik.

The remark at the end of section 3 for the case of covariant derivatives
in the matter tensor applies here as well.

5 An example: Exponential gravity

5.1 New variational principle

As an example, we now take a recent model for f(R)-gravity [16] with:

f(R) = −cr(1− e−
R
r ) , f ′ = −ce−

R
r , (36)

where r of dimension (length)2 and c, dimensionless, are constants. From

(14) Rg = −1
c
Rγe

Rγ

r . Thus, the inverse Rγ = r−1(Rg) can be obtained only

numerically. A series expansion for Rγ

r
<< 1 leads to:

Rγ = −cRg −
c2

r
R2

g −
3

2

c3

r2
R3

g ± · · , (37)

and

Rg =
2κTg

c2
[1− 2κTg

rc
+

2

3
(
2κTg

rc
)2 ± ··] (38)

If the further calculations are restricted to the lowest order in the expansion
(37), with the Einstein tensor Gab = Rab − 1

2
Rg gab the field equations (20)

become:

Gab({kij}g) = −2κ

c2
[1− 4

κTg

rc
] Tab − κTg

c2
κTg

rc
gab . (39)

For a perfect fluid with pressure p = 0, from (21) to lowest order the equations
replacing Einstein’s are:

Rab({kij}g)−
1

2
Rg gab = −2κ

c2
(1− 4

κµ

rc
) µ uaub −

κ2µ2

rc3
gab . (40)

The result is a variable coupling “constant” in the effective matter tensor
and a variable cosmological term both depending on the energy density of
matter.
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For a homogeneous and isotropic cosmological model with scale factor
a(t) and flat space sections, (40) leads to altered Friemann equations:

(
ȧ

a
)2 =

2κµ

3c
(1− 7

2

κµ

cr
) , (41)

2
ä

a
+ (

ȧ

a
)2 =

κ2µ2

rc3
. (42)

Keep in mind that r, c are free constants of the model; the velocity of light
has been put equal to 1 in (42). As numerical calculations would have to be
done, and the main aim of this paper is the introduction of a new variational
principle, we will not comment on this particular model (exponential gravity)
and the physics following from it.

5.2 Palatini method

For exponential gravity as given by (36) and for pressureless fluid matter,
the field equations according to the first equation of (29) turn out to be

Rik(Γ) =
2κ

c
Tik(g, u

A) + gik r(1− e−
R
r ). (43)

This does not look complicated; however the connection Γ first must be
expressed by the conformally related metric ḡab. To the same order of ap-
proximation, the final field equation then can be written as:

Rab(g)−
1

2
R(g) gab = −2κµuaub −

2κ

rc
[µ,i;j − gij�µ]−

− 2κ2

r4c2
µ,i µ,j +

κ2

r4c2
gij µ,l µ,m glm . (44)

The effective matter tensor in (44) depends on 1st and 2nd gradients of the
energy density of matter. This shows that the physics resulting from the
two variational principles may be quite different. The same can be said with
regard to the Einstein-Hilbert metric variation used in [16] and e.g., in [17],
[18] and the new variational principle.

6 Concluding remarks

For physics, a significant difference between the new variational method pre-
sented here and the Palatini method is that non-minimal coupling of matter

10



and the curvature scalar R occurs by multiplication with functions of R or
the trace of the matter tensor. In the Palatini method, non-minimal coupling
happens via the gradients of the scalar curvature (trace of the matter tensor).
A conceptual advantage of the new method is that it works within (pseudo)-
Riemannian geometry; metric-affine geometry never does appear.8 When
dealing with R + f(R)-Lagrangians, in both approaches a new dimensionful
constant is needed whose physical meaning must be defined. Application
to f(R, RabR

ab) is unproblematic; here, two new parameters will occur. In
general, via the field equations both curvature invariants can be expressed
as functionals of invariants of the matter tensor. The Einstein-Hilbert La-
grangian seems to be very robust: now there are at least three different
methods for a derivation of the Einstein field equations. As the example
treated shows, for more general Lagrangians the variation will lead to differ-
ent physical theories. Whether the new variational principle introduced here,
if applied to cosmological models, produces convincing physics will have to
be shown by further studies.
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